首页> 外文OA文献 >Quenched invariance principles for random walks and elliptic diffusions in random media with boundary
【2h】

Quenched invariance principles for random walks and elliptic diffusions in random media with boundary

机译:带边界随机介质中随机游动和椭圆扩散的淬灭不变性原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Via a Dirichlet form extension theorem and making full use of two-sided heat kernel estimates, we establish quenched invariance principles for random walks in random environments with a boundary. In particular, we prove that the random walk on a supercritical percolation cluster or amongst random conductances bounded uniformly from below in a half-space, quarter-space, etc., converges when rescaled diffusively to a reflecting Brownian motion, which has been one of the important open problems in this area. We establish a similar result for the random conductance model in a box, which allows us to improve existing asymptotic estimates for the relevant mixing time. Furthermore, in the uniformly elliptic case, we present quenched invariance principles for domains with more general boundaries.
机译:通过Dirichlet形式扩展定理并充分利用两侧热核估计,我们建立了具有边界的随机环境中随机游动的淬灭不变性原理。尤其是,我们证明了,当扩散扩散地缩放为反射的布朗运动时,超临界渗流簇上的随机游动或从下方均匀限制在半空间,四分之一空间等中的随机电导会收敛到反射布朗运动,这是其中之一。这方面的重要开放问题。我们在一个盒子中为随机电导模型建立了相似的结果,这使我们能够为相关的混合时间改善现有的渐近估计。此外,在均匀椭圆的情况下,我们提出了具有更一般边界的域的淬灭不变性原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号